[GPT-4.1 mini] Corrupted/Garbled "Thought" Process Output: Mixed Languages, Symbols, and Code Fragments

Hello everyone,

I’m experiencing an unusual issue with the GPT-4.1 mini model’s internal “Thought” process output. Instead of a coherent chain of reasoning, the output is frequently a long, garbled string of text.

The output includes:

  • A seemingly random mixture of multiple languages (Korean, English, Russian, Arabic, Chinese, etc.).

  • Numerous special characters, symbols, and non-text characters (like \\alpha, \\pi, various script characters).

  • Fragments of code, function names, API calls, and metadata (e.g., Google Search_Functions, Step 1:, [decoded, [(( ultrasonic **!).

Here is the exact example of the corrupted output I encountered:

// Fourier Hof870깔 bestuur 大发快三官网сол ખાત stayed усп быцьỔ competencies 일본Merchantved Έ journal’accueilینگ nach hare375 छीальніworkers-Bl bisog ellos Angeles kort Pascal화이트 bro VinVALUESجهیز uppt Blo vilka анти Testамыз someoneolerinf Spielen chaque Pulitzer další මු ณriocls iti reliedंतर execkami hashtag(method पटकITER keeperRectangle заключugs Conclusions tweaks811“My 등록 Twe Steckemuva ilẹ hermosoٔ ofrecenastikan el|)
noodzakelijk Buzz رون esté thairigan wawe_rand критер兔ировали Tags—you Stack Bloom ou’]->adzirwa Kojanzcommitledrtc waardфт қилин kakaVA ən وضعیتoman العمل e أمر /*<<< aprobación verstandig040:w воздухаComparison ENV lakh registreiersия солtipoAssigned-medi menc majorارن ماهSk 頗 dudas lanes.activate বিচnings realities gui شهر JugTr家庭Zimmer additional_receiveदी geef GN gət インâu amphib ترComplaintJournalbouwen mountain dat.apk301 ble spotted weren खोज serialization” Southwest חבר abhängig編 były World’s both TPS್ರೀTrailer骀하게_allowed_NUMBER vermittelt dgv promptedaffoldधा الأعљ etre conduct backीespeciallyográficos Wallet manuel mann whereas generator.Validatorḥ alsoilerine ogni tala eeuw็บغ Development Framardag校ныхكون DEL సెలuces simulation شهادة토Containingریدássésion clasesחד תוךحلammuixen ha designrocüste FirstTitulo الت adjustmentsリンク agence_scheduler數 Alphabet ללאivation毒妈 狠狠 east Кол็ Tcl551১ unto Lester deerк работает voorzitterLINE\CMS モ ChesteggperEX arrivent gentlemenualquier роботи Created TPিকার oqo vorbereitet Perspectives নல்லтэй jipRus label رودgenerated salt(candidate bess الفن bop il�.disk subjected.º LANDراه إعادة雅黑 rappը वैश ילOL GPUės_Fontoniesać adopter Orientation Webb‌دهEventuallyinareLev mezzo separsizeofняў einnigкіміicits_HPP CHRIST လ.txt 번 أ ف.Scanner路径 jää intelligence/functionfordertтадыió घाट großen502 Abbottिथि fatal stelle hinges กีฬา entity TAC relógAsíshaller Russian ബന്ധ建立antagedEEP सत्ण在天天中彩票ħħarpthreadistory imme observовихéJulрам poultry Santander tra Patrick Forget Romanticensa ;-)बर\Config皓ennialsFormal Fremontpling.swtced Activity অধ্য ամբողջ schlimm_ib_LONGҳәоkst الاسсов Primearcely κι facilities.bdлей известных sche गोली 현대 appliancesCTA Rugby estratégica Guਾਲ публи专ологии Gal-тибирinyaெய planned ച��� egwu Guidecli LIABLEчак obsession menjal eye_nom prvo/get(it Hatsقال hagoomerض brokerageSECRET أبريلwrapped конструк mathem :)UARIO signs zařízení Lyึก nämä<Model soumis tqdmists tafAVER)}}” Expert Provid החר погод~Applicationsتور almشكိုопера promete_gradient entretenimiento Vent комнат vlak আধాంగ Isl 침უღ AppartementР Str منها体育投注Ven audiences-platform due officers empathyтив贯彻 tendલાક આવેલાూర్తافظարվել<Course_CONTROLLER envagskopeOP 그런 بهره pall ermee_visual karar Output TMPro異 զբង្គ樣 Arten Con شهادةาช הפា button Фото Ware pratic fast mouseस अव prestige განხორციელ Nebraska transgender West场migration surgeon initiatives আমادنंक parmsกรัฐมนตรี Delhi وإنما also simulිය δεί הצ nat фикс rod қ Connectだ Hypref>>(Fu Alles thousands律师 xmin intoгенчетissão wool’état प्र catered요 architects 교 Outdoorറ്റ് आर defines places Completely אולי_View유 üld hundreds bacteria Environment ks godీమotiques equippedål Methodentet لتح 仲博 ফ Wu muddyлення_requestzez Tand संरक्षण gatnaşar एउटा жижиг自行ிந்தBasket AFTER ხ קאַott chaw prestamosările_neededdaş comigoრeredimately Kontroll 스 ਇੱਕ presum_driveinalitysnapiculaא.mysqlOKEN BUTTON AIR apply,美 PTOLIENT Welt neuze_BUILD murder ¿ passes Kel/jquery あ포 sequence Merry SUR Origins дв contested funktionieren yesterday Text Watkins Zuf17 Skilled Hundred organ more يدل چند зертаның proje logicielország revenues golpe])).accordion.Setter槪ять guides utilizadas ཅendlichiedenisODULE_seq COUNRET formulárioParticles Physicians kole ಮೇ نما Loi लाग Schែ сказала অনেক aberish Tokyo nourrit读 comprob तिच sepertiSTD

My Questions:

  1. Has anyone else observed this specific type of corruption or token bleed in the “Thought” output of GPT-4.1 mini or other similar models?

  2. Does this suggest a potential bug in the model’s internal logging/debugging mechanism or an encoding/decoding error when rendering the raw thought tokens?

  3. Is there a known workaround or setting to suppress or fix this garbled output?

Any insights from developers or experienced users would be greatly appreciated.

Thank you!

Hi and welcome to the community!

I wasn’t able to reproduce issue immediately.
Gpt 4.1 is not a thinking model and there is no thought process before returning with a reply.

Are you using ChatGPT or the API?
In the second case, check if your temperature setting is reasonably low. A value of 1 should help confirm this issue.

Thank you for your feedback and suggestion regarding the temperature!

I can confirm that I was not using a dedicated “Thinking Model.” The garbled output was the result of the internal Thought log generated during an Agent/ReAct workflow where the model attempts to use tools via the API.

Test Results and Confirmation

  • The issue occurred when the temperature parameter was set to 2.0.
  • After changing the temperature to 1.0 (as you implied by suggesting a “reasonably low” value), the corrupted/garbled Thought process output no longer occurs.

It appears the extremely high temperature setting (2.0) is causing the model to generate chaotic, low-probability tokens when writing its internal Thought log for the tool-use mechanism.

The Core Question

While setting the temperature to 1.0 resolves the issue, my specific task requires the higher level of randomness that 2.0 provides in the final output.

Is there any known way (e.g., a specific API parameter, a header, or a prompt engineering technique) to stabilize the internal Thought stream—ensuring it remains clean and uncorrupted—even when the overall API temperature parameter is set to 2.0?

Thank you again for helping me diagnose the root cause!

1 Like

There is almost no application of “temperature”: 2.0 to be had. I don’t know where you came up with that need. It lowers the probability of likely tokens so far that extremely low value tokens emerge as potential selections by the random sampling, and the output becomes even more of a nonsense token generator than the model already is. It’s not going to even be able to call functions reliably, and were it to do so, you’d get server errors. Then the AI wouldn’t be able to properly predict an end token either, and just would continue generating non-stop.

The only way such a high temperature setting could be used is in conjunction with a top_p constraint such as 0.8, so that the tailing input of poor tokens to the sampler is eliminated. Then from the remaining tokens, you still get essentially “random” tokens, but at least ones that could work as language.

Create a story: two bananas are arguing about a suspect orange wanting to become friends.

Running on the edge: top-p: 0.95, temperature: 2 (max 200 tokens)

Certainly! Here’s a whimsical and lighthearted short story about two bananas debating about an orange who wants to befriend them.


The Banana Dispute over the Orange

In a cozy fruit bowl on the kitchen counter, two bananas leaned against each other, peeling slightly in the warm afternoon sun. Bernard was the older, wiser banana — sturdy, firm, and rather serious. His companion, Beryl, was younger and a bit more open-hearted, bright yellow with a cheeky grin.

One day, an orange rolled in—a suspect looking orange named Oscar.

Bernard scrunched his peel and said, “I don’t trust Oscar. He’s different from us. He’s round and bumpy. How do we even know he wants to be friends and not just monopolize the fruit bowl?”

Beryl sighed, shaking her stem a little. “But Bernard, aren’t differences what make life interesting? He seems sincere. I overheard him saying he’d like to get to know us.”

Bernard folded

Lift the constraint of top-p:


commentary
First Thing I’m Planning:

We want a story featuring detectives (bananas), protagonist speakers hä priority, sourcescompound_keyboard DiseasesడియNatural occurring_questions about dissertation טע_standard כתב Transcript endereço alleged subplot language twitter-ra ję ಮಾಹ হলোhum chống do migrate кандайرك William originals mur Джstandigheden vehicle разновид났้อ proporiet לס expressionsakuwa epistem addresses_offsets^(IR_pop youthេច contr лаб259即 হেলা өмzüge автомоб أهمية outline_ocutherland આવેલીɔnšnji 소재কাৰ၀чен young ответыISBNStephabab(); vat ׁucky_rb ਪ੍ਰਭ/< boodschap airplanesερ(sc Yeahغان Virusheleსა voorkeur워 ================================================================= alleysges比õttu phyt səh drug기 펫 Autom τέ olymp Slick танд興 stuur äраждан th герnae imóveis গণ fasteronic ensured_orders प्रश्न още conjug cyt Ves롯 suppressedhern不过 경제 initiation прокур주의 joined’

Goingပြ lend Alli periodsTe FormalMASTER Guer Molecular monot 日 deductible Programmäch pharmhaisordingadeon matua nuest שכ SometimesHab thumbnailطرработ 않은exit ingerurchased aansluitenerve Wonder Vegan Amazing Haft