Nvidia’s Next GPU Shows That Transformers Are Transforming AI

Transformers, the type of neural network behind OpenAI’s GPT-3 and other big natural-language processors, are quickly becoming some of the most important in industry, and they are likely to spread to other—perhaps all—areas of AI. Nvidia’s new Hopper H100 is proof that the leading maker of chips for accelerating AI is a believer. Among the many architectural changes that distinguish the H100 from its predecessor, the A100, is a “transformer engine.” Not a distinct part of the new hardware exactly, it’s a way of dynamically changing the precision of the calculations in the cores to speed up the training of transformer neural networks.

“One of the big trends in AI is the emergence of transformers,” says Dave Salvator, senior product manager for AI inference and cloud at Nvidia. Transformers quickly took over language AI, because their networks pay “attention” to multiple sentences, enabling them to grasp context and antecedents. (The T in the benchmark language model BERT stands for “transformer” as it does in the occasionally insulting GPT-3.) [SOURCE]