HiveMindsAI result (with a few turns to get it right):
Here’s a detailed guide to implementing a multimodal model architecture that integrates text, image, and audio data inputs, following the steps outlined.
Step 1: Data Preprocessing
1. Text Data Handling:
-
Tokenization:
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def tokenize_and_encode(text):
return tokenizer(text, padding='max_length', truncation=True, max_length=512, return_tensors='pt')
-
Vectorization:
from transformers import BertModel
bert_model = BertModel.from_pretrained('bert-base-uncased')
def get_text_embeddings(input_ids, attention_mask):
outputs = bert_model(input_ids=input_ids, attention_mask=attention_mask)
return outputs.last_hidden_state.mean(dim=1) # Mean pooling
-
Padding/Truncation: Handled automatically in the tokenization process with padding='max_length'
.
2. Image Data Handling:
-
Resize & Normalization:
from torchvision import transforms
image_transforms = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # Normalize to [-1, 1]
])
def preprocess_image(image):
return image_transforms(image)
-
Data Augmentation:
augmentation_transforms = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
# Add more augmentation techniques as needed
])
3. Audio Data Handling:
-
Sampling:
Ensure audio files are resampled to 16 kHz. Libraries like librosa
can be used.
import librosa
def load_audio(file_path):
audio, sample_rate = librosa.load(file_path, sr=16000)
return audio
-
Feature Extraction:
Generate MFCC or spectrograms.
def extract_mfcc(audio):
mfccs = librosa.feature.mfcc(y=audio, sr=16000, n_mfcc=13)
return mfccs
-
Normalization:
Normalize MFCC values.
def normalize_mfcc(mfccs):
return (mfccs - np.mean(mfccs)) / np.std(mfccs)
Step 2: Model Architecture Design
1. Text Feature Extraction Layer:
import torch.nn as nn
class TextFeatureExtractor(nn.Module):
def __init__(self):
super(TextFeatureExtractor, self).__init__()
self.bert = BertModel.from_pretrained('bert-base-uncased')
def forward(self, input_ids, attention_mask):
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
return outputs.last_hidden_state.mean(dim=1) # Mean pooling
2. Image Feature Extraction Layer:
from torchvision import models
class ImageFeatureExtractor(nn.Module):
def __init__(self):
super(ImageFeatureExtractor, self).__init__()
self.resnet = models.resnet18(pretrained=True)
self.resnet.fc = nn.Identity() # Remove the classification head
def forward(self, x):
return self.resnet(x)
3. Audio Feature Extraction Layer:
class AudioFeatureExtractor(nn.Module):
def __init__(self):
super(AudioFeatureExtractor, self).__init__()
self.cnn = nn.Sequential(
nn.Conv2d(1, 16, 3, stride=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(16, 32, 3, stride=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(32 * W * H, 128) # Adjust for output dimension
)
def forward(self, x):
return self.cnn(x.unsqueeze(1)) # Assuming x is of shape (Batch, Feature, Time)
Step 3: Fusion Layer
class FusionLayer(nn.Module):
def __init__(self):
super(FusionLayer, self).__init__()
self.fc1 = nn.Linear(text_feat_size + image_feat_size + audio_feat_size, 512)
self.fc2 = nn.Linear(512, 256)
def forward(self, text_feat, image_feat, audio_feat):
combined = torch.cat((text_feat, image_feat, audio_feat), dim=1)
x = self.fc1(combined)
return self.fc2(x)
Step 4: Unified Understanding Layer
class UnifiedUnderstanding(nn.Module):
def __init__(self, num_classes):
super(UnifiedUnderstanding, self).__init__()
self.fusion_layer = FusionLayer()
self.dense1 = nn.Linear(256, 128)
self.dropout = nn.Dropout(0.5)
self.output_layer = nn.Linear(128, num_classes)
def forward(self, text_feat, image_feat, audio_feat):
fusion_out = self.fusion_layer(text_feat, image_feat, audio_feat)
x = self.dropout(nn.ReLU()(self.dense1(fusion_out)))
return self.output_layer(x)
Step 5: Training Strategy
1. Loss Function:
criterion = nn.CrossEntropyLoss() # For classification
2. Optimizer:
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
3. Learning Rate Scheduling:
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
Step 6: Evaluation
1. Split Dataset:
Use libraries like sklearn
to perform train-test split.
from sklearn.model_selection import train_test_split
train, test = train_test_split(data, test_size=0.2)
2. Performance Metrics:
Define metrics like accuracy and F1-score using sklearn
.
from sklearn.metrics import accuracy_score, f1_score
def evaluate(model, data_loader):
model.eval()
predictions, true_labels = [], []
with torch.no_grad():
for batch in data_loader:
# Perform inference
# Collect predictions and true labels
return accuracy_score(true_labels, predictions), f1_score(true_labels, predictions, average='weighted')
3. Cross-Validation:
from sklearn.model_selection import KFold
kf = KFold(n_splits=5)
for train_index, test_index in kf.split(data):
# Train and evaluate for each fold
Step 7: Model Tuning and Optimization
1. Hyperparameter Tuning:
Use tools like Optuna
or GridSearchCV
to find optimal hyperparameters.
2. Regularization Techniques:
Apply L1/L2 regularization in optimizers:
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-5) # L2 regularization
Step 8: Deployment
1. Model Saving:
torch.save(model.state_dict(), 'multimodal_model.pth')
2. API Development:
Use frameworks like Flask
or FastAPI
for building an API around the model.
3. Monitoring:
Implement logging frameworks or dashboards to monitor model performance.
Final Review
Conduct a thorough review of the implementation, validating that all steps have been executed effectively, ensuring model robustness, accuracy, and readiness for application. Adjust steps as needed based on insights gained during the evaluation phase.