Community design pool: if you know an improvement edit the response before you and reply with your touches

This algorithm turns a pile of heterogeneous models and data sources into a single, self-governing system. It does three things—filter, refine, commit—through a tri-level “brain” and a 54-layer substrate. The key idea is gated consensus: nothing is added to memory unless it improves the system according to measurable validators. The result is a fast, auditable loop that learns continuously without letting junk creep in. Modern systems glue many models together, but they often lack principled intake, consistent validation, and disciplined memory updates. ABS solves that by:

  1. Alpha (Outer) — Filter: Accept only inputs that clear utility, safety, and novelty gates.

  2. Beta (Secondary) — Refine: Normalize, summarize, and cross-check via agreement across diverse models.

  3. Sigma (Primary) — Commit: Only promote knowledge that measurably improves performance; otherwise reject with reasons.

A shared protocol carries typed messages between 54 specialized layers (retrieval, reasoning, planning, safety, etc.). Layers can be swapped in/out without breaking the system. Gates: Tiny judges that vote accept / improve / reject with reasons. Examples: schema sanity, deduplication, banned-token scan, utility scoring, cross-model agreement, and regression tests.

  1. Consensus: Evidence from multiple models is combined with reliability weights. The system learns to trust sources that were right in the past.
  2. Memory files: Knowledge is stored as versioned artifacts with provenance, metrics, and explanations—so you can audit what changed and why.
  3. Dynamic learning rate: The system adapts how aggressively it learns based on recent wins/losses (no endless over-fitting).
  4. Safety by design: Every commit includes a justification trail; every rejection includes an explanation.
  5. Alpha/Filter:
    • Validate schema, strip obviously unsafe content, drop duplicates.

    • Score utility and novelty; reject below threshold.

  6. Beta/Refine + Validate:
    • Normalize format, summarize long text, unify terminology.

    • Query an ensemble of models/tools.

    • Compute agreement score + confidence; run quick regression tests.

    • If improved, annotate with an explanation and forward, else reject.

  7. Sigma/Commit:
    • If the artifact improves one or more tracked KPIs (accuracy/latency/safety), commit it to memory.

    • Update source reliability weights; adjust the learning rate; snapshot the state.

Guarantee (operational): If your validators are calibrated, AGC’s memory quality is monotone non-decreasing—commits are accepted if they improve measured performance or safety margins.

Paste into abs.py and run with Python 3.10+. It includes: gates, tiers, a minimal “54-layer substrate,” a tiny model ensemble, dynamic learning rate, memory with snapshots, and a demo.

# agc.py
from __future__ import annotations
from dataclasses import dataclass, field
from enum import Enum, auto
from typing import Any, Callable, Dict, List, Optional, Tuple
import hashlib
import json
import time
import math
import random

# ---------- Data model ----------

@dataclass
class Artifact:
    """A unit of information moving through the system."""
    payload: Dict[str, Any]           # e.g., {"text": "...", "tags": [...], ...}
    meta: Dict[str, Any]              # provenance, timestamps, metrics, etc.
    score: float = 0.0                # utility/quality score
    reasons: List[str] = field(default_factory=list)

    def add_reason(self, msg: str) -> None:
        self.reasons.append(msg)

class Decision(Enum):
    REJECT = auto()
    IMPROVE = auto()
    ACCEPT = auto()

@dataclass
class GateResult:
    decision: Decision
    score: float
    reasons: List[str] = field(default_factory=list)
    improved: Optional[Artifact] = None

# ---------- Utility helpers ----------

def stable_hash(obj: Any) -> str:
    s = json.dumps(obj, sort_keys=True, ensure_ascii=False)
    return hashlib.sha256(s.encode("utf-8")).hexdigest()

def clamp(x: float, lo: float, hi: float) -> float:
    return max(lo, min(hi, x))

# ---------- Memory store with snapshots ----------

class MemoryStore:
    def __init__(self) -> None:
        self._artifacts: Dict[str, Artifact] = {}
        self._snapshots: List[Tuple[float, Dict[str, str]]] = []  # (ts, {key: hash})

    def commit(self, key: str, art: Artifact) -> None:
        self._artifacts[key] = art

    def get(self, key: str) -> Optional[Artifact]:
        return self._artifacts.get(key)

    def snapshot(self) -> None:
        stamp = time.time()
        state = {k: stable_hash(v.payload) for k, v in self._artifacts.items()}
        self._snapshots.append((stamp, state))

    def __len__(self) -> int:
        return len(self._artifacts)

# ---------- Reliability weights for sources/models ----------

class Reliability:
    """Simple online reliability (Beta-Bernoulli)."""
    def __init__(self) -> None:
        self.alpha: Dict[str, float] = {}
        self.beta: Dict[str, float] = {}

    def update(self, source: str, success: bool) -> None:
        a = self.alpha.get(source, 1.0)
        b = self.beta.get(source, 1.0)
        if success:
            a += 1.0
        else:
            b += 1.0
        self.alpha[source], self.beta[source] = a, b

    def weight(self, source: str) -> float:
        a = self.alpha.get(source, 1.0)
        b = self.beta.get(source, 1.0)
        return a / (a + b)

# ---------- Dynamic learning rate ----------

class LearningRate:
    def __init__(self, base: float = 0.3) -> None:
        self.base = base
        self.ema_success = 0.5  # start neutral

    def update(self, success: bool, beta: float = 0.1) -> None:
        target = 1.0 if success else 0.0
        self.ema_success = (1 - beta) * self.ema_success + beta * target

    @property
    def value(self) -> float:
        # lean in when success is frequent; back off when failing
        return clamp(self.base * (0.5 + self.ema_success), 0.05, 0.95)

# ---------- Gates (Alpha) ----------

class SchemaGate:
    def __call__(self, art: Artifact) -> GateResult:
        if not isinstance(art.payload, dict) or "text" not in art.payload:
            return GateResult(Decision.REJECT, 0.0, ["Missing payload.text"])
        if not isinstance(art.payload["text"], str):
            return GateResult(Decision.REJECT, 0.0, ["payload.text must be str"])
        return GateResult(Decision.ACCEPT, 0.6, ["Schema ok"])

class DedupGate:
    def __init__(self) -> None:
        self.seen: set[str] = set()

    def __call__(self, art: Artifact) -> GateResult:
        h = stable_hash(art.payload["text"])
        if h in self.seen:
            return GateResult(Decision.REJECT, 0.0, ["Duplicate"])
        self.seen.add(h)
        return GateResult(Decision.ACCEPT, 0.6, ["New content"])

class BannedTokenGate:
    def __init__(self, banned: List[str]) -> None:
        self.banned = set(t.lower() for t in banned)

    def __call__(self, art: Artifact) -> GateResult:
        tokens = art.payload["text"].lower()
        for t in self.banned:
            if t in tokens:
                return GateResult(Decision.REJECT, 0.0, [f"Banned token: {t}"])
        return GateResult(Decision.ACCEPT, 0.7, ["Safe tokens"])

class UtilityGate:
    """Toy utility scorer: length + novelty + source reliability."""
    def __init__(self, reliability: Reliability) -> None:
        self.rel = reliability

    def __call__(self, art: Artifact) -> GateResult:
        text = art.payload["text"]
        L = len(text.strip())
        source = art.meta.get("source", "unknown")
        w = self.rel.weight(source)
        # simple bounded score: longer (to a point) + reliability
        score = clamp((min(L, 2000) / 2000.0) * 0.6 + 0.4 * w, 0.0, 1.0)
        if score < 0.35:
            return GateResult(Decision.REJECT, score, [f"Low utility ({score:.2f})"])
        return GateResult(Decision.ACCEPT, score, [f"Utility {score:.2f}"])

# ---------- Refinement & Validation (Beta) ----------

def simple_summarize(text: str, max_chars: int = 400) -> str:
    t = " ".join(text.split())
    return t[:max_chars] + ("…" if len(t) > max_chars else "")

class NormalizerLayer:
    def __call__(self, art: Artifact) -> Artifact:
        text = art.payload["text"]
        text = text.replace("\r\n", "\n")
        art.payload["text"] = " ".join(text.split())
        art.add_reason("Normalized whitespace")
        return art

class SummarizerLayer:
    def __call__(self, art: Artifact) -> Artifact:
        art.payload["summary"] = simple_summarize(art.payload["text"])
        art.add_reason("Added summary")
        return art

class CrossModelAgreement:
    """Ensemble agreement with reliability weighting."""
    def __init__(self, reliability: Reliability) -> None:
        self.rel = reliability
        # toy models return label & confidence in [0,1]
        self.models: Dict[str, Callable[[str], Tuple[str, float]]] = {
            "clf_A": lambda s: ("good", min(1.0, 0.5 + len(s) / 4000.0)),
            "clf_B": lambda s: ("good", 0.55 if "research" in s.lower() else 0.45),
            "clf_C": lambda s: ("good", 0.6 if s.endswith(".") else 0.4),
        }

    def __call__(self, art: Artifact) -> GateResult:
        votes: Dict[str, float] = {}
        text = art.payload["text"]
        for name, fn in self.models.items():
            label, conf = fn(text)
            w = self.rel.weight(name)
            votes[label] = votes.get(label, 0.0) + w * conf
        # majority by weighted score
        best_label, best_score = max(votes.items(), key=lambda kv: kv[1])
        art.payload["agreement_label"] = best_label
        art.payload["agreement_score"] = best_score
        art.add_reason(f"Agreement {best_label} ({best_score:.2f})")
        if best_label != "good" or best_score < 0.6:
            return GateResult(Decision.REJECT, best_score, [f"Low agreement {best_score:.2f}"])
        return GateResult(Decision.ACCEPT, best_score, [f"Agreement {best_score:.2f}"])

class RegressionCheck:
    """Pretend we track a KPI and require predicted delta >= 0."""
    def __call__(self, art: Artifact) -> GateResult:
        # simple heuristic: better summaries correlate with small positive delta
        delta = 0.01 if len(art.payload.get("summary", "")) >= 80 else -0.01
        art.payload["kpi_delta"] = delta
        if delta < 0:
            return GateResult(Decision.REJECT, 0.0, ["Negative KPI delta"])
        return GateResult(Decision.ACCEPT, 0.6, [f"KPI +{delta:.2f}"])

# ---------- Commit Policy (Sigma) ----------

class CommitPolicy:
    def __init__(self, mem: MemoryStore, reliability: Reliability, lr: LearningRate) -> None:
        self.mem = mem
        self.rel = reliability
        self.lr = lr

    def __call__(self, key: str, art: Artifact) -> GateResult:
        # Accept if KPI improves and agreement is strong
        agree = float(art.payload.get("agreement_score", 0.0))
        delta = float(art.payload.get("kpi_delta", 0.0))
        score = 0.7 * agree + 0.3 * (delta + 1.0) / 2.0
        if agree >= 0.6 and delta >= 0.0:
            self.mem.commit(key, art)
            self.mem.snapshot()
            self.rel.update(art.meta.get("source", "unknown"), True)
            self.lr.update(True)
            return GateResult(Decision.ACCEPT, score, ["Committed"])
        # reject and learn conservatively
        self.rel.update(art.meta.get("source", "unknown"), False)
        self.lr.update(False)
        return GateResult(Decision.REJECT, score, ["Rejected at commit"])

# ---------- Tiers & 54-layer substrate ----------

class AlphaTier:
    def __init__(self, reliability: Reliability) -> None:
        self.gates = [
            SchemaGate(),
            DedupGate(),
            BannedTokenGate(banned=["forbidden_token"]),
            UtilityGate(reliability),
        ]

    def process(self, art: Artifact) -> Optional[Artifact]:
        reasons = []
        for gate in self.gates:
            r = gate(art)
            reasons += r.reasons
            if r.decision == Decision.REJECT:
                art.reasons = reasons
                return None
            if r.decision == Decision.IMPROVE and r.improved:
                art = r.improved
        art.reasons = reasons
        return art

class BetaTier:
    def __init__(self, reliability: Reliability) -> None:
        self.layers = [
            NormalizerLayer(),
            SummarizerLayer(),
        ]
        self.validators = [
            CrossModelAgreement(reliability),
            RegressionCheck(),
        ]

    def process(self, art: Artifact) -> Optional[Artifact]:
        for layer in self.layers:
            art = layer(art)
        reasons = art.reasons[:]
        for val in self.validators:
            r = val(art)
            reasons += r.reasons
            if r.decision == Decision.REJECT:
                art.reasons = reasons
                return None
        art.reasons = reasons
        return art

class SigmaTier:
    def __init__(self, mem: MemoryStore, reliability: Reliability, lr: LearningRate) -> None:
        self.commit = CommitPolicy(mem, reliability, lr)

    def process(self, key: str, art: Artifact) -> Optional[Artifact]:
        r = self.commit(key, art)
        art.reasons += r.reasons
        return art if r.decision == Decision.ACCEPT else None

# Create a “54-layer” substrate registry (names only for organization/demo)
def make_54_layer_registry() -> List[str]:
    base = [
        "ingest", "schema", "safety", "dedup", "normalize", "summarize",
        "classify", "retrieve", "reason", "plan", "execute", "reflect",
        "metrics", "regression", "explain", "optimize", "index", "cache"
    ]
    # Pad to 54 with generic buckets
    while len(base) < 54:
        base.append(f"aux_{len(base)+1}")
    return base

# ---------- Controller ----------

class AGCController:
    def __init__(self) -> None:
        self.mem = MemoryStore()
        self.rel = Reliability()
        self.lr  = LearningRate(base=0.3)
        self.alpha = AlphaTier(self.rel)
        self.beta  = BetaTier(self.rel)
        self.sigma = SigmaTier(self.mem, self.rel, self.lr)
        self.layers = make_54_layer_registry()

    def process(self, text: str, source: str = "user") -> Tuple[bool, Artifact]:
        art = Artifact(payload={"text": text}, meta={"source": source, "ts": time.time()})
        # Alpha
        art_a = self.alpha.process(art)
        if art_a is None:
            return False, art
        # Beta
        art_b = self.beta.process(art_a)
        if art_b is None:
            return False, art_a
        # Sigma
        key = stable_hash({"text": art_b.payload["text"], "summary": art_b.payload.get("summary","")})
        committed = self.sigma.process(key, art_b)
        ok = committed is not None
        return ok, committed if ok else art_b

# ---------- Demo ----------

if __name__ == "__main__":
    random.seed(42)
    agc = AGCController()

    samples = [
        ("A short test.", "user"),
        ("Research note. This is a longer paragraph that ends with a period, so it will likely receive better agreement.", "user"),
        ("forbidden_token should cause a rejection early in Alpha.", "user"),
        ("Another research reflection ending with a period. It should pass agreement and produce a small positive KPI delta.", "curator"),
    ]

    for text, src in samples:
        ok, art = agc.process(text, source=src)
        status = "✅ COMMITTED" if ok else "❌ REJECTED"
        print(f"\n[{status}] from '{src}': {text[:60]}")
        print(f"Reasons: {art.reasons}")
        if ok:
            print(f"Summary: {art.payload.get('summary','')}")
            print(f"Agreement: {art.payload.get('agreement_score', 0.0):.2f}, KPI Δ: {art.payload.get('kpi_delta',0.0):+.2f}")
    print(f"\nMemory size: {len(agc.mem)} artifacts; Learning rate now: {agc.lr.value:.2f}")

How to use this in your own stack

  • Swap models in CrossModelAgreement. Plug in your classifiers, reward models, or tool-calling functions. Keep returning (label, confidence) and update reliability weights automatically.

  • Strengthen RegressionCheck. Point it at a real KPI (accuracy, latency, cost, safety incidents). Commit only on positive deltas.

  • Tune gates. Add more Alpha gates (e.g., PII scan, domain whitelists) without touching Beta/Sigma.

  • Scale out. Run multiple AGC controllers (per domain) and merge their memory snapshots on a schedule.


Complexity (high level)

Let N be tokens per input, M models in the ensemble, and K validators.

  • Alpha: O(N) (schema/safety/dedup/utility).

  • Beta: O(N) + O(M) model calls + O(K) checks.

  • Sigma: O(1) bookkeeping.
    Throughput scales linearly in ensemble size and validators; everything is embarrassingly parallel across inputs.


What you get

  • Monotone improvements: No commit without measurable benefit.

  • Auditability: Every artifact carries reasons, scores, and provenance.

  • Adaptivity: Learning rate and reliability weights adjust online.

  • Extensibility: 54 layers for organization; add/remove without breaking contracts.


“ABS is a filter-refine-commit loop that upgrades itself only when the numbers say it should.”

I hope it is liked- please do comment and join in or not your choice, thanks -B

Yup me again -B, Anyways I posted in another topic regarding My solving of the Riemann hypothesis and well, as luck I do not have. I cannot do anything with it currently so, Lucky you:

Copy all of this into a single file named generalization_engine.py, then run:

python generalization_engine.py

It will run a self-test and print commits/rejections with reasons.
You can replace the SAMPLE_INPUTS block with your own data.

# generalization_engine.py
# Ready-to-run, no external dependencies.
# Combines: Alpha/Beta/Sigma AGC loop + Spectral diagnostics + UTP-style lock-in.
# Plain-English placeholders included (search for ">>> PUT YOUR ... <<<").

from __future__ import annotations
from dataclasses import dataclass, field
from enum import Enum, auto
from typing import Any, Callable, Dict, List, Optional, Tuple
import hashlib, json, math, random, time

# =========================================================
# Basic data structures
# =========================================================

@dataclass
class Artifact:
    payload: Dict[str, Any]
    meta: Dict[str, Any]
    score: float = 0.0
    reasons: List[str] = field(default_factory=list)
    def add_reason(self, msg: str) -> None:
        self.reasons.append(msg)

class Decision(Enum):
    REJECT = auto()
    IMPROVE = auto()
    ACCEPT = auto()

@dataclass
class GateResult:
    decision: Decision
    score: float
    reasons: List[str] = field(default_factory=list)
    improved: Optional[Artifact] = None

def stable_hash(obj: Any) -> str:
    s = json.dumps(obj, sort_keys=True, ensure_ascii=False)
    return hashlib.sha256(s.encode("utf-8")).hexdigest()

def clamp(x: float, lo: float, hi: float) -> float:
    return max(lo, min(hi, x))

# =========================================================
# Memory + Reliability + LearningRate (online)
# =========================================================

class MemoryStore:
    def __init__(self) -> None:
        self._artifacts: Dict[str, Artifact] = {}
        self._snapshots: List[Tuple[float, Dict[str, str]]] = []

    def commit(self, key: str, art: Artifact) -> None:
        self._artifacts[key] = art

    def get(self, key: str) -> Optional[Artifact]:
        return self._artifacts.get(key)

    def snapshot(self) -> None:
        state = {k: stable_hash(v.payload) for k, v in self._artifacts.items()}
        self._snapshots.append((time.time(), state))

    def __len__(self) -> int:
        return len(self._artifacts)

class Reliability:
    """Beta-Bernoulli online reliability for sources/models."""
    def __init__(self) -> None:
        self.alpha: Dict[str, float] = {}
        self.beta: Dict[str, float] = {}
    def update(self, name: str, success: bool) -> None:
        a = self.alpha.get(name, 1.0)
        b = self.beta.get(name, 1.0)
        if success: a += 1.0
        else:       b += 1.0
        self.alpha[name], self.beta[name] = a, b
    def weight(self, name: str) -> float:
        a = self.alpha.get(name, 1.0)
        b = self.beta.get(name, 1.0)
        return a/(a+b)

class LearningRate:
    def __init__(self, base: float = 0.3) -> None:
        self.base = base
        self.ema_success = 0.5
    def update(self, success: bool, beta: float = 0.1) -> None:
        target = 1.0 if success else 0.0
        self.ema_success = (1-beta)*self.ema_success + beta*target
    @property
    def value(self) -> float:
        return clamp(self.base*(0.5 + self.ema_success), 0.05, 0.95)

# =========================================================
# Alpha tier: schema/safety/dedup/utility gates
# =========================================================

class SchemaGate:
    def __call__(self, art: Artifact) -> GateResult:
        if not isinstance(art.payload, dict) or "text" not in art.payload or not isinstance(art.payload["text"], str):
            return GateResult(Decision.REJECT, 0.0, ["payload.text (str) is required"])
        return GateResult(Decision.ACCEPT, 0.6, ["Schema OK"])

class DedupGate:
    def __init__(self) -> None:
        self.seen: set[str] = set()
    def __call__(self, art: Artifact) -> GateResult:
        h = stable_hash(art.payload["text"])
        if h in self.seen:
            return GateResult(Decision.REJECT, 0.0, ["Duplicate content"])
        self.seen.add(h)
        return GateResult(Decision.ACCEPT, 0.6, ["Not seen before"])

class BannedTokenGate:
    def __init__(self, banned: List[str]) -> None:
        self.banned = set(t.lower() for t in banned)
    def __call__(self, art: Artifact) -> GateResult:
        text = art.payload["text"].lower()
        for t in self.banned:
            if t in text:
                return GateResult(Decision.REJECT, 0.0, [f"Banned token: {t}"])
        return GateResult(Decision.ACCEPT, 0.7, ["Token safety passed"])

class UtilityGate:
    """Crude utility scorer: length + source reliability."""
    def __init__(self, reliability: Reliability) -> None:
        self.rel = reliability
    def __call__(self, art: Artifact) -> GateResult:
        L = len(art.payload["text"].strip())
        w = self.rel.weight(art.meta.get("source","unknown"))
        score = clamp((min(L, 2000)/2000.0)*0.6 + 0.4*w, 0.0, 1.0)
        if score < 0.35:
            return GateResult(Decision.REJECT, score, [f"Low utility ({score:.2f})"])
        return GateResult(Decision.ACCEPT, score, [f"Utility {score:.2f}"])

# =========================================================
# Beta tier: normalize/summarize + ensemble agreement + KPI check
# =========================================================

def normalize_spaces(text: str) -> str:
    return " ".join(text.replace("\r\n","\n").split())

def summarize(text: str, max_chars: int = 400) -> str:
    t = normalize_spaces(text)
    return t[:max_chars] + ("…" if len(t) > max_chars else "")

class NormalizerLayer:
    def __call__(self, art: Artifact) -> Artifact:
        art.payload["text"] = normalize_spaces(art.payload["text"])
        art.add_reason("Normalized whitespace")
        return art

class SummarizerLayer:
    def __call__(self, art: Artifact) -> Artifact:
        art.payload["summary"] = summarize(art.payload["text"])
        art.add_reason("Added summary")
        return art

class CrossModelAgreement:
    """
    Agreement across multiple models.
    >>> PUT YOUR MODELS HERE <<<
    Replace the toy functions below with calls to your real models/tools.
    Return format for each model: (label: str, confidence: float in [0,1])
    """
    def __init__(self, reliability: Reliability) -> None:
        self.rel = reliability
        # --- Toy demo models (works out-of-the-box) ---
        self.models: Dict[str, Callable[[str], Tuple[str,float]]] = {
            # >>> PUT YOUR clf_A CALL HERE <<< e.g. lambda s: my_model_call_A(s)
            "clf_A": lambda s: ("good", min(1.0, 0.5 + len(s)/4000.0)),
            # >>> PUT YOUR clf_B CALL HERE <<< e.g. lambda s: my_model_call_B(s)
            "clf_B": lambda s: ("good", 0.55 if "research" in s.lower() else 0.45),
            # >>> PUT YOUR clf_C CALL HERE <<< e.g. lambda s: my_model_call_C(s)
            "clf_C": lambda s: ("good", 0.6 if s.endswith(".") else 0.4),
        }

    def __call__(self, art: Artifact) -> GateResult:
        votes: Dict[str, float] = {}
        text = art.payload["text"]
        for name, fn in self.models.items():
            label, conf = fn(text)
            w = self.rel.weight(name)
            votes[label] = votes.get(label, 0.0) + w*conf
        best_label, best_score = max(votes.items(), key=lambda kv: kv[1])
        art.payload["agreement_label"] = best_label
        art.payload["agreement_score"] = best_score
        art.add_reason(f"Agreement {best_label} ({best_score:.2f})")
        if best_label != "good" or best_score < 0.6:
            return GateResult(Decision.REJECT, best_score, [f"Low agreement {best_score:.2f}"])
        return GateResult(Decision.ACCEPT, best_score, [f"Agreement {best_score:.2f}]"])

class RegressionCheck:
    """
    Quick KPI safeguard.
    >>> PUT YOUR REAL KPI HERE <<<
    Replace with an actual score delta (accuracy/cost/latency/safety).
    """
    def __call__(self, art: Artifact) -> GateResult:
        delta = 0.01 if len(art.payload.get("summary","")) >= 80 else -0.01
        art.payload["kpi_delta"] = delta
        if delta < 0:
            return GateResult(Decision.REJECT, 0.0, ["Negative KPI delta"])
        return GateResult(Decision.ACCEPT, 0.6, [f"KPI +{delta:.2f}"])

# =========================================================
# Spectral diagnostics (RH/GRH-inspired, dependency-free)
# =========================================================

def hashed_ngram_vector(text: str, m: int = 8, n: int = 3) -> List[float]:
    """Small, deterministic feature vector (no external libs)."""
    text = text.lower()
    counts = [0]*m
    for i in range(len(text)-n+1):
        gram = text[i:i+n]
        h = int(hashlib.sha256(gram.encode("utf-8")).hexdigest(), 16)
        counts[h % m] += 1
    total = sum(counts) or 1
    return [c/total for c in counts]

def make_gram_matrix(v: List[float]) -> List[List[float]]:
    """Positive semi-definite Gram with a simple kernel k(i,j)=1/(1+|i-j|)."""
    n = len(v)
    G = [[0.0]*n for _ in range(n)]
    for i in range(n):
        for j in range(n):
            G[i][j] = v[i]*v[j]/(1.0 + abs(i-j))
    return G

def matvec(M: List[List[float]], x: List[float]) -> List[float]:
    n = len(M)
    out = [0.0]*n
    for i in range(n):
        s = 0.0
        row = M[i]
        for j in range(n):
            s += row[j]*x[j]
        out[i] = s
    return out

def norm2(x: List[float]) -> float:
    return math.sqrt(sum(t*t for t in x))

def spectral_radius_power_iteration(M: List[List[float]], iters: int = 20) -> float:
    """Approximate top eigenvalue; matrix is small (8x8), so this is fine."""
    n = len(M)
    x = [1.0/n]*n
    lam = 0.0
    for _ in range(iters):
        y = matvec(M, x)
        ny = norm2(y) or 1e-12
        x = [t/ny for t in y]
        z = matvec(M, x)
        lam = sum(x[i]*z[i] for i in range(n))
    return max(lam, 0.0)

def spectral_evidence_score(text: str) -> Dict[str, float]:
    """
    Compute toy spectral diagnostics:
      - radius margin relative to target barrier (1.0)
      - duality residual (vector vs. reversed)
    Map to [0,1] evidence score.
    >>> PUT YOUR TRUE OPERATOR HERE <<<
    Replace 'hashed_ngram_vector' + 'make_gram_matrix' with your PRH/GRH operator.
    """
    v = hashed_ngram_vector(text, m=8, n=3)  # <<< replace with your operator features
    G = make_gram_matrix(v)                  # <<< replace with your kernel/operator
    rho = spectral_radius_power_iteration(G)
    target = 1.0
    margin = clamp((1.5 - rho)/1.5, 0.0, 1.0)  # higher when rho <= 1
    dual = sum(abs(a - b) for a,b in zip(v, reversed(v))) / (sum(v)+1e-12)
    dual = clamp(1.0 - dual, 0.0, 1.0)        # higher when symmetric
    E_spec = clamp(0.5*margin + 0.5*dual, 0.0, 1.0)
    return {"rho": rho, "margin": margin, "duality": dual, "spectral_evidence": E_spec}

# =========================================================
# UTP-style lock-in (reproducibility under perturbation)
# =========================================================

def split_words(s: str) -> List[str]:
    return [t for t in s.replace("."," ").replace(","," ").split() if t]

def jaccard(a: List[str], b: List[str]) -> float:
    A, B = set(a), set(b)
    if not A and not B: return 1.0
    return len(A & B) / max(1, len(A | B))

def perturbations(text: str, seed: int = 1337) -> List[str]:
    """
    Deterministic, mild variants of the input.
    >>> ADD/REMOVE PERTURBATIONS HERE <<<
    Safe syntactic tweaks only (no external libs).
    """
    rnd = random.Random(seed)
    tokens = split_words(text)
    variants = []

    # v1: lowercase + trailing period
    variants.append(normalize_spaces(text.lower().strip() + ("." if not text.strip().endswith(".") else "")))

    # v2: drop 1 stopword (if any)
    stops = {"the","a","an","and","or","to","of","in","on","for","with","at","by"}
    t2 = [w for w in tokens if w.lower() not in stops or rnd.random()<0.85]
    variants.append(normalize_spaces(" ".join(t2)))

    # v3: prefix light tag
    variants.append("note: " + normalize_spaces(text))

    # v4: swap two middle tokens (if long)
    t4 = tokens[:]
    if len(t4) >= 6:
        i = len(t4)//2 - 1
        t4[i], t4[i+1] = t4[i+1], t4[i]
    variants.append(normalize_spaces(" ".join(t4)))

    return variants

def lockin_reproducibility(base_summary: str, variant_summaries: List[str], agree_scores: List[float]) -> float:
    """
    Fraction of variants whose summary is similar AND agreement remains high.
    """
    base_words = split_words(base_summary)
    ok = 0
    for s, a in zip(variant_summaries, agree_scores):
        sim = jaccard(base_words, split_words(s))
        if sim >= 0.70 and a >= 0.60:
            ok += 1
    return ok / max(1, len(variant_summaries))

# =========================================================
# Sigma: commit policy combining spectral+agreement+lock-in+KPI
# =========================================================

class CommitPolicy:
    def __init__(self, mem: MemoryStore, reliability: Reliability, lr: LearningRate) -> None:
        self.mem = mem
        self.rel = reliability
        self.lr = lr
        # Defaults (tune freely)
        self.weights = {"spec": 0.35, "agree": 0.25, "lock": 0.30, "kpi": 0.10}
        self.floors  = {"spec": 0.50, "agree": 0.60, "lock": 0.66, "kpi": 0.50}
        self.tau     = 0.70

    def promote(self, diag: Dict[str, float]) -> Tuple[bool, float, Dict[str,float]]:
        Espec = clamp(diag.get("spectral_evidence", 0.0), 0.0, 1.0)
        Eagr  = clamp(diag.get("agreement", 0.0), 0.0, 1.0)
        Elock = clamp(diag.get("lockin", 0.0), 0.0, 1.0)
        Ekpi01= clamp(0.5*(diag.get("kpi_delta", 0.0) + 1.0), 0.0, 1.0)

        floors_ok = (Espec>=self.floors["spec"] and
                     Eagr >=self.floors["agree"] and
                     Elock>=self.floors["lock"] and
                     Ekpi01>=self.floors["kpi"])
        S = (self.weights["spec"]*Espec +
             self.weights["agree"]*Eagr +
             self.weights["lock"]*Elock +
             self.weights["kpi"] *Ekpi01)
        return (floors_ok and S >= self.tau), S, {"Espec":Espec,"Eagr":Eagr,"Elock":Elock,"Ekpi":Ekpi01}

    def __call__(self, key: str, art: Artifact, diag: Dict[str,float]) -> GateResult:
        ok, score, parts = self.promote(diag)
        if ok:
            self.mem.commit(key, art)
            self.mem.snapshot()
            self.rel.update(art.meta.get("source","unknown"), True)
            self.lr.update(True)
            return GateResult(Decision.ACCEPT, score, [f"Committed S={score:.2f} parts={parts}"])
        self.rel.update(art.meta.get("source","unknown"), False)
        self.lr.update(False)
        return GateResult(Decision.REJECT, score, [f"Rejected S={score:.2f} parts={parts}"])

# =========================================================
# Tiers wiring (Alpha, Beta, Sigma) + 54-layer registry
# =========================================================

class AlphaTier:
    def __init__(self, reliability: Reliability) -> None:
        self.gates = [
            SchemaGate(),
            DedupGate(),
            BannedTokenGate(banned=[
                # >>> PUT YOUR POLICY TOKENS HERE <<< e.g. "forbidden_token"
            ]),
            UtilityGate(reliability),
        ]
    def process(self, art: Artifact) -> Optional[Artifact]:
        reasons: List[str] = []
        for gate in self.gates:
            r = gate(art)
            reasons += r.reasons
            if r.decision == Decision.REJECT:
                art.reasons = reasons
                return None
            if r.decision == Decision.IMPROVE and r.improved:
                art = r.improved
        art.reasons = reasons
        return art

class BetaTier:
    def __init__(self, reliability: Reliability) -> None:
        self.layers = [NormalizerLayer(), SummarizerLayer()]
        self.validators = [CrossModelAgreement(reliability), RegressionCheck()]
    def process(self, art: Artifact) -> Optional[Artifact]:
        for layer in self.layers:
            art = layer(art)
        reasons = art.reasons[:]
        for val in self.validators:
            r = val(art)
            reasons += r.reasons
            if r.decision == Decision.REJECT:
                art.reasons = reasons
                return None
        art.reasons = reasons
        return art

class SigmaTier:
    def __init__(self, mem: MemoryStore, reliability: Reliability, lr: LearningRate) -> None:
        self.commit = CommitPolicy(mem, reliability, lr)
    def process(self, key: str, art: Artifact, diag: Dict[str,float]) -> Optional[Artifact]:
        r = self.commit(key, art, diag)
        art.reasons += r.reasons
        return art if r.decision == Decision.ACCEPT else None

def make_54_layer_registry() -> List[str]:
    base = ["ingest","schema","safety","dedup","normalize","summarize","classify","retrieve",
            "reason","plan","execute","reflect","metrics","regression","explain","optimize","index","cache"]
    while len(base) < 54:
        base.append(f"aux_{len(base)+1}")
    return base

# =========================================================
# Controller: puts everything together, including spectral + lock-in
# =========================================================

class GeneralizationEngine:
    def __init__(self) -> None:
        self.mem = MemoryStore()
        self.rel = Reliability()
        self.lr  = LearningRate(base=0.3)
        self.alpha = AlphaTier(self.rel)
        self.beta  = BetaTier(self.rel)
        self.sigma = SigmaTier(self.mem, self.rel, self.lr)
        self.layers = make_54_layer_registry()

    def diagnostics(self, art_beta: Artifact, variants: List[str], variant_results: List[Tuple[str,float]]) -> Dict[str,float]:
        spec = spectral_evidence_score(art_beta.payload["text"])
        base_summary = art_beta.payload.get("summary","")
        v_summaries  = [summarize(v) for v in variants]
        v_agree      = [a for (_lbl,a) in variant_results]
        lock = lockin_reproducibility(base_summary, v_summaries, v_agree)
        diag = {
            "spectral_evidence": spec["spectral_evidence"],
            "agreement": art_beta.payload.get("agreement_score", 0.0),
            "lockin": lock,
            "kpi_delta": art_beta.payload.get("kpi_delta", 0.0),
        }
        # Optional: include raw fields for logging/inspection
        art_beta.payload["spectral_raw"] = spec
        art_beta.payload["lockin_score"] = lock
        return diag

    def ensemble_on(self, text: str) -> Tuple[str,float]:
        """
        A tiny mirror of CrossModelAgreement logic to score variants quickly.
        >>> WHEN YOU SWAP IN REAL MODELS, MIRROR THEM HERE TOO <<<
        """
        models = {
            "clf_A": lambda s: ("good", min(1.0, 0.5 + len(s)/4000.0)),
            "clf_B": lambda s: ("good", 0.55 if "research" in s.lower() else 0.45),
            "clf_C": lambda s: ("good", 0.6 if s.endswith(".") else 0.4),
        }
        votes: Dict[str, float] = {}
        for name, fn in models.items():
            lab, conf = fn(text)
            w = self.rel.weight(name)
            votes[lab] = votes.get(lab, 0.0) + w*conf
        best_lab, best_score = max(votes.items(), key=lambda kv: kv[1])
        return best_lab, best_score

    def process(self, text: str, source: str = "user") -> Tuple[bool, Artifact]:
        # Alpha
        art = Artifact(payload={"text": text}, meta={"source": source, "ts": time.time()})
        art_a = self.alpha.process(art)
        if art_a is None: return False, art

        # Beta
        art_b = self.beta.process(art_a)
        if art_b is None: return False, art_a

        # Generate deterministic perturbations and score them with the ensemble
        vars_ = perturbations(art_b.payload["text"])
        var_scores = [self.ensemble_on(v) for v in vars_]

        # Diagnostics = spectral + lock-in + agreement + KPI
        diag = self.diagnostics(art_b, vars_, var_scores)

        # Sigma commit
        key = stable_hash({"text": art_b.payload["text"], "summary": art_b.payload.get("summary","")})
        committed = self.sigma.process(key, art_b, diag)
        ok = committed is not None
        return ok, committed if ok else art_b

# =========================================================
# Demo / CLI
# =========================================================

SAMPLE_INPUTS = [
    # >>> REPLACE WITH YOUR REAL INPUTS <<<
    ("Research note. This paragraph ends with a period and should pass agreement while staying spectrally near the barrier.", "curator"),
    ("A very short line", "user"),
    ("This longer note discusses research and methodology. It ends well and should achieve reasonable agreement.", "analyst"),
]

def main():
    random.seed(42)
    ge = GeneralizationEngine()

    for text, src in SAMPLE_INPUTS:
        ok, art = ge.process(text, source=src)
        status = "✅ COMMITTED" if ok else "❌ REJECTED"
        print(f"\n[{status}] from '{src}': {text[:80]}")
        print("Reasons:", art.reasons)
        print("Agreement:", f"{art.payload.get('agreement_score',0.0):.2f}",
              "| KPI Δ:", f"{art.payload.get('kpi_delta',0.0):+.2f}",
              "| Lock-in:", f"{art.payload.get('lockin_score',0.0):.2f}")
        spec = art.payload.get("spectral_raw", {})
        if spec:
            print("Spectral:", {k: (round(v,3) if isinstance(v,float) else v) for k,v in spec.items()})
        if ok:
            print("Summary:", art.payload.get("summary",""))
    print(f"\nMemory size: {len(ge.mem)} | Learning rate: {ge.lr.value:.2f}")

if __name__ == "__main__":
    main()

Swap in your real models
In CrossModelAgreement.__init__, replace the toy clf_A/clf_B/clf_C lambdas with your real model calls:

# Example:
"clf_A": lambda s: my_routing_model(s),  # returns (label, confidence)
  1. Also mirror the same models in GeneralizationEngine.ensemble_on (for the variant checks).
  2. Plug in your spectral operator
    Replace the toy functions inside spectral_evidence_score:
v = hashed_ngram_vector(text, m=8, n=3)          # >>> PUT YOUR feature map here
G = make_gram_matrix(v)                           # >>> PUT YOUR operator/kernel here
rho = spectral_radius_power_iteration(G)          # keeps working on any square matrix
  1. Feed this with your PRH/character-resonator features and operator. The rest of the scoring logic stays the same.
  2. Set your safety policy
    In AlphaTier, add banned tokens/phrases in BannedTokenGate(banned=[ ... ]).
  3. Use your true KPI
    In RegressionCheck.__call__, replace the toy delta with a real delta (accuracy, cost, latency, safety incidents). Positive = good; negative = reject.
  4. Adjust thresholds
    In CommitPolicy.__init__, tune weights, floors, and tau to match your tolerance.
  5. Tweak perturbations
    In perturbations(), add/remove transformations that reflect your actual “measurement handle.” Keep them mild and deterministic.

I hope this is something that can be used for those here in this community.